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Abstract It is hypothesized that the risk of rupture of cerebral aneurysms is related to geometrical and mechan-
ical properties of the arterial wall as well as to local hemodynamics. In order to gain better understanding of the
hemodynamical factors involved in intra-aneurysmal flows, a thorough analysis of the 3D velocity field within an
idealized geometry is needed. This includes the identification and quantification of features like vortices and stag-
nation regions. The aim of our research is to develop experimentally validated computational methods to analyse
intra-aneurysmal vortex patterns and, eventually, define candidate hemodynamical parameters (e.g. vortex strength)
that could be predictive for rupture risk. A computational model based on a standard Galerkin finite-element
approximation and an Euler implicit time integration has been applied to compute the velocity field in an idealized
aneurysm geometry and the results have been compared to Particle Image Velocimetry (PIV) measurements in an
in vitro model. In order to analyze the vortices observed in the aneurysmal sac, the vortex identification scheme as
proposed by Jeong and Hussain (JFM 285:69-94, 1995) is applied. The 3D intra-aneurysmal velocity fields reveal
complex vortical structures. This study indicates that the computational method predicts well the vortex structure
that is found in the in vitro model and that a 3D analysis method like the vortex identification as proposed is needed
to fully understand and quantify the vortex dynamics of intra-aneurysmal flow. Furthermore, such an automated
analysis method would allow the definition of parameters predictive for rupture in clinical practice.
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1 Introduction

Cerebral aneurysms are localized pathological dilatations of cerebral arteries, most commonly found in the circle
of Willis. In the general population, approximately 2—5% is likely to harbor these aneurysms [1,2], which have an
annual rupture risk of approximately 1% [3]. Rupture of a cerebral aneurysm results in subarachnoid hemorrhage
(SAH), with a mortality rate of 40-50% [4,5].
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Fig. 1 Schematic representation of the factors involved in aneurysm rupture

The rupture risk is determined by the loading state and the mechanical properties of the arterial wall, which
are both related to the hemodynamics as illustrated in Fig. 1. The loading state, i.e., wall stress (i), depends on the
mechanical properties of the arterial wall (j), the aneurysmal geometry (f) and the intra-aneurysmal pressure (e).
The pressure is determined by the flow (b) through the parent artery and the peripheral resistance (a). The influence
of the peripheral circulation is not considered in most Computational Fluid Dynamics (CFD) models since they
focus on an isolated rigid aneurysm geometry [6,7]. Coupling the 3D model to a 1D model of the global cerebral
circulation would allow prescribing more realistic boundary conditions. Furthermore, autoregulation controlling the
resistance provides feedback of the pressure and flow. The local geometry, which slightly varies with the pressure
due to the distensibility of the arterial wall, has a major effect on the intra-aneurysmal flow patterns (b) [8]. However,
this geometry is also affected by the flow via biochemical cascades that control the adaptation of the arterial wall
(mechano-transduction) [9, 10]. The flow-induced wall shear rate (c) is known to affect particle residence times (d).
Moreover, changes in shear-stress (¢) magnitude and direction alter the permeability of the arterial wall and the
transport (d) between the lumen and wall [11]. Endothelial cells are sensitive to these hemodynamical changes,
resulting in the activation of biochemical factors (/) that control the adaptation of the arterial wall (g). Altogether,
this adaptation may become pathological and may cause weakening of the arterial wall, which, under the influence
of wall stress, may result in aneurysm growth. In the event of rupture (k), the mechanical properties of the arterial
wall have been altered by the degradation process such that the stress in the wall exceeds its strength.

One would prefer to base the decision whether or not to treat an aneurysm on the balance between the risk-
of-rupture and the risk related to the treatment itself. However, the risk of rupture is not easily determined, since
there currently are no proven methods for in vivo measurements of flow, pressure or mechanical properties of the
wall in cerebral aneurysms. Several attempts have been made to find a direct correlation between geometry and risk
of rupture, using parameters like size of the dome and aspect ratio [12—14]. However, no conclusive critical size
parameter could be defined based on those studies. Currently, the decision whether treatment is recommended is
based primarily on the size of an aneurysm, although this remains controversial.

Since rupture risk is also related to hemodynamical factors, intra-aneurysmal velocity fields in idealized as well
as patient-specific models have been analyzed in various studies [15—17]. Since several methods for in vivo flow
measurements in cerebral arteries are in development, it seems realistic to use these flow measurements as input for
numerical models of which the geometry has been determined by e.g. CT imaging or 3D Rotational Angiography
(3D-RA). In general, the intra-aneurysmal velocity fields show complex 3D flow patterns containing inflow jets,
vortices, and stagnation regions. A quantitative comparison of 3D-RA images recorded with a high frame rate and
numerical results shows similar flow patterns, which suggests that these major features are captured by the CFD
models [18]. Cebral et al. [6] suggested a direct relation between intra-aneurysmal flow patterns and rupture risk.
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The flow patterns in the aneurysmal sac of patient-specific geometries were characterized based on the stability of
inflow jet and the number of vortices. Unstable flow patterns could be related to aneurysm progression and rupture
due to elevated oscillating stresses or larger regions of elevated mean wall shear stresses. Stable patterns may
provide a more suitable environment for arterial adaptation mechanisms to counterbalance the stresses, resulting
in safer aneurysms. Indeed, simple stable flow patterns, large impingement regions and large jet sizes are more
commonly found in unruptured aneurysms, whereas disturbed flow patterns, small impingement regions and nar-
row jets were found more frequently in ruptured aneurysms. However, further research, evaluating more patient-
specific geometries, is needed to confirm these preliminary results. In order to enable a more thorough and efficient
analysis of the intra-aneurysmal velocity fields, these features should be identified in an automated fashion. Vortex
and stagnation region identification allow a more accurate analysis of patient data, and therefore, are believed to
enhance our understanding of the flow patterns observed in various geometries and sites at which rupture occurs
most frequently.

In this research, a vortex identification scheme as proposed by Jeong and Hussain [19] has been implemented
in order to evaluate the intra-aneurysmal velocity field in an idealized CFD model of a lateral aneurysm with a
curved parent artery. The velocity field computed with this model is compared to the velocity field measured with
Particle Image Velocimetry (PIV) in order to validate the observed vortex structure and check for possibly missed
transitional flow features. Obviously, the geometry of both the parent artery and aneurysm have a high impact on
the flow patterns, resulting in e.g. underestimation of the wall shear stress and complexity of the flow pattern in
idealized geometries [20,21]. However, the rigid-walled idealized model is more suitable for examining the value
of such an identification scheme in the analysis of aneurysmal flow patterns. Furthermore, this paper argues the
commonly employed method of reviewing a single cross-section in the analysis of the complex 3D intra-aneurysmal
flow.

Eventually, this research should lead to a more accurate method to estimate the risk of rupture of cerebral
aneurysms. When accurate in vivo measurement of blood flow in the, frequently small, parent arteries becomes
possible, the shear rate experienced by the endothelial cells covering the aneurysmal wall can be derived. The
response of those endothelial cells leads to adaptation, or, in aneurysms, degradation of the arterial wall. Hence,
patient-specific CFD modeling will become a valuable tool in risk-of-rupture assessment when models describ-
ing the relation of this degradation process to the hemodynamics become available. In clinical practice, however,
the flow analysis should be based on automated methods like the vortex identification method presented in this
study.

2 Materials and methods
2.1 CFD

In general, the flow characteristics in lateral aneurysms depend on the geometrical configuration of the aneurysm in
relation to the parent vessel, the size of the neck, the volume of the aneurysm and the hemorheological properties.
The geometry used here (Fig.2) was based on the geometrical considerations described by Parlea et al. [22].

The intra-aneurysmal velocity field is obtained by solving the momentum equation

av
p[5+v-Vv]:—Vp+V~t+f (1
and the incompressibility constraint:
V-v=0 (2)

on the 3-dimensional domain Q (2 C R’ constrained by the closed boundary I'). Here, p denotes the con-
stant density, v the velocity vector, f a body force defined per unit of volume, p the hydrostatic pressure and
7 the extra stress tensor. Since Newtonian fluid behavior is assumed, the relation for the extra stress tensor
reads:
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Fig. 2 Geometry of the lateral aneurysm model in [mm]. Measured from the neck, the aneurysm height and semi-axis height equal 7
and 3 mm respectively, while the neck width is 3.9 mm. The 3D finite-element mesh generated with Patran (MSC Software) consists of
39,405 tetrahedron elements, with a total of 152,095 degrees of freedom

v

T =2nD, 3

with 7 the dynamic viscosity and D = (Vv + Vo) /2 the rate of deformation tensor. Substitution of (3) in (1) while
neglecting body forces like gravity results in the well-known incompressible Navier—Stokes equations. Together
with the appropriate boundary conditions on I" and suitable initial conditions, the Navier—Stokes equations will
result in a unique solution for v and p when the Reynolds numbers are sufficiently low. The weak formulation of
the Navier—Stokes equations is found after definition of the appropriate Sobolev space of functions with 18¢ order
square-integrable derivativeson Q (W = {w € [HO1 P } that vanish on I" where Dirichlet boundary conditions are
prescribed, as well as Q, the Lebesgue space of square-integrable functionson Q (Q = {g € L*(R), fQ qd2 = 0}).
In that case, the weak form is given by

3
/,ow-[—v+v-Vv]dQ+/anT:Vde—/pV-wdQ
Q Q

ot
:/w-(—pn—}-rn)dr‘ Yw e W, (@]
r
/qV~de=O Vg € Q. (5
Q

The variational form is solved using Crouzeix—Raviart-type finite elements. These elements apply second-order
continuous interpolation for the fluid velocity and a linear discontinuous basis for pressure interpolation. In this
work, the domain 2 is discretized using tetrahedral elements with 15 nodal points. The 3-dimensional computational
grid is shown in Fig. 2.

At the arterial wall and the wall of the aneurysm, no-slip boundary conditions were applied. At the proximal side
of the parent artery a sinusoidal start-up Poiseuille profile was prescribed, reaching a steady state limit after 1s. At
the distal side of the parent artery, the normal component of the stress vector, and all in-plane velocity components,
were prescribed as equal to zero. Based on the data reported by [23-25], the mean blood flow through the 4 mm
parent artery was chosen to be 3.6mls™!. The radius of the parent artery, the mean blood velocity, and the blood
viscosity (3.5 mPas) result in a Reynolds number (Re = pV R/n) of Re = 165.

Temporal discretization of the Navier—Stokes equations was achieved using the implicit Euler scheme, while
Newton’s method was used for the linearization of the convective terms within each time step. The iterative method
used to solve the linearized set of equations is Bi-CGStab with an incomplete LU decomposition pre-conditioner
[26].
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2.2 Vortex identification

The vortex identification method developed by Jeong and Hussain [19] is based on the second largest eigenvalue
of D + Slz, with D and & = (Vv — VvT) /2 the deformation and rotation tensor, respectively. After substitution
of the vorticity equation, the gradient of the Navier—Stokes equations read

9D 1
SoAVVIDED 42 = ——V(Vp) + L. 6)
P p

The Hessian of the pressure H, = V(V p) provides information about local pressure minima within the flow. In
general, pressure gradients can be attributed to local irrotational straining (first two terms of the left hand side of
Eq. 6), viscous dissipation (last term on the right-hand side) and rotational effects in the vortex cores. Hence, the
rotational effects on the pressure gradient are represented in

Hy' = —p(D* + 2%). (7

In order to find a local pressure minimum due to rotation around the vortex core two negative eigenvalues of —H '
are required. Hence,

A =eig(D? + 9%, withiy <0 (A1 < Az < A3) (8)

results in a surface (12 < 0) that constrains the position of the vortex core(s).

2.3 Experiment

An in vitro model of an aneurysm on a curved parent artery (Fig.2) was produced out of silicone (Sylgard 184). A
stationary pump (Cole—Palmer, Mo0.75211-15) was used to produce a stationary flow with Re = 165.

A 30wt% electrolyte solution of calcium chloride and magnesium chloride (ratio 5:1) was selected as working
fluid, minimizing the difference in refraction indices. In order to enable the PIV measurements, the fluid was seeded
with silver-coated hollow glass particles with mean particle size 10 wm and density 1.4 x 103 kgm™3 (DANTEC).
The particles were illuminated by a continuous argon ion laser (Midwest ILT 5500A; 458-515nm; 300 mJ/s) and
recorded by a high-speed video camera (Phantom V9.0).

2.4 Data acquisition and postprocessing

The three measured planes correspond to plane b, e and h in Fig. 3. The high-speed video camera allows high frame
rates providing a temporal resolution usually not achieved in PIV. Plane b was measured using a frame rate of
5.4kHz, while 5kHz was used for the other planes. Depending on the expected velocities within the measurement

Fig. 3 The velocity fields are visualized on 9 cross-sections, of which the numbering corresponds to the numbering in Figs. 5 and 7
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Fig. 4 The absolute
in-plane velocity (in ms~')
determined with CFD and
PIV in planes b, e, and h, as
defined in Fig. 3. The
velocity vector scaling in
planes e and h is a factor 3
higher for visualization
purposes. The flow in the
parent artery, as shown in
the profiles (top), is from
left to right

TR TR

CFD

_____ plane b

plane, either subsequent frames (plane b) or every tenth frame were correlated. The region of interest is imaged on
570 x 368 pixels, and the scaling factor is 2.5 x 10~ m per pixel for planes b and h, whereas it is 2.9 x 10~ m per
pixel for plane e.

The velocity field was computed using an adaptive correlation method [27], which improves the correlation for
larger displacements and velocity gradients. In the first incremental step the size of the interrogation areas was
32 x 32 pixels, the result of which is used to pre-shift the interrogation areas in the next incremental step in which
the interrogation area size equals 16 x 16 pixels. Furthermore, every step uses a 50% overlap of the interrogation
areas to reduce loss-of-pairs.

Various methods are available to identify erroneous vectors which are inevitably present in PIV data even when
the experiment is conducted carefully [28]. In general, detecting erroneous vectors based on temporal information is
not reliable since PIV has a rather low temporal resolution [29]. However, since the measurements were performed
with a high frame rate in a stationary flow without any expected transient flow phenomena, the velocity field could
be averaged over the 189 measurements performed.
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Fig. 5 The velocity field within several cross-sections, of which the numbering is as introduced in Fig. 3. The contours represent the
out-of-plane velocities (in ms~!). The flow in the parent artery is from left to right in a—f, while the viewing direction in g—i is in the
direction of the flow

In order to compare the computational and experimental results, the computed velocities were interpolated onto
a uniform grid of which the grid size corresponds to the PIV data. Equal Reynolds numbers were used in the exper-
iment and computation. Furthermore, several cross-sections (Fig. 3) were visualized for a more detailed analysis of
the 3D velocity field obtained with the CFD model.

3 Results

The profiles in Fig. 4 clearly show the slanted profile in the curved parent artery, with higher velocities and velocity
gradients near the outer wall. The aneurysmal neck shows a high velocity gradient where the aneurysmal vortex
and the flow in the parent artery meet. In order to estimate the quantitative agreement of PIV and CFD, the discrete
integrals of the velocity magnitude over the lines shown in Fig.4 are determined. In the parent artery (below the
neck as indicated by the arrow in Fig.4), this integral is approximately 8% higher in PIV relative to CFD. In the
aneurysm however, the difference is approximately 2% in both directions.
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Fig. 6 Bottom view of the out-of-plane velocity (in ms~!) in the lower part of the neck (leff) and 0.3 mm higher, at the upper part of
the neck (right). Since these cross-sections are localized just above and underneath the site where the inflow jet meets the distal lip of
the neck, the light area at the distal lip in the top cross-section represents the inflow in the aneurysms while the red area in the lower
cross-section represents the fluid that goes straight back into the parent artery and never entered the aneurysm. Inflow occurs mainly in
the symmetry plane, whereas outflow occurs along the wall. The flow into the parent artery is from left to right

The contours in Fig.4 represent the magnitude of the in-plane velocity determined with CFD and PIV. The
measured velocities are slightly higher than the computed velocities. Both velocity fields in plane b (Fig.4) depict
a single vortex structure in the aneurysmal sac, with the vortex center located distally to the aneurysm center.
Furthermore, the velocities and velocity gradients near the distal wall are much higher compared to those at the
proximal wall. Plane h (Fig.4) reveals secondary flow patterns in the curved parent artery, although the velocity in
the center of the parent artery is not captured by the PIV measurements. The flow patterns (e.g. vortex core in the
top of the aneurysmal sac) observed in the velocity field obtained with PIV do not appear in the computed velocity
field. In plane e (Fig.4), however, the features show good agreement.

While with PIV only three planes are measured, CFD allows a more detailed analysis of multiple planes in the 3D
velocity field. Figure 5 shows the velocity field in the cross-sections defined in Fig. 3, with the contours representing
the out-of-plane velocity. The velocity fields in Fig. Sa—c depict a single vortex structure as described above.

Inflow occurs mainly at the distal lip of the neck close to the plane of symmetry (Fig.5b, d). As the inflow jet
meets the distal lip, a portion of the flow is directed into the aneurysm, whereas most fluid follows the flow in the
parent artery. This is clearly visible from the out-of-plane velocity in two cross-sections in the aneurysmal neck
(Fig. 6), just above and underneath the site where the inflow jet meets the distal lip. At the bottom of the neck the
velocity at the distal lip is directed towards the parent artery (red), while the cross-section at the top of the neck
shows flow into the aneurysm (white). The inflow jet widens as it spreads over the distal wall, initiating two small
vortex cores on each side of the symmetry plane at the distal side of the aneurysm (Fig. 5d, e). In the upper part of
the aneurysm the fluid follows the wall (Fig. 5f).

Figure 5g—i depicts a shift of the secondary flow pattern in the parent artery towards the aneurysm as it proceeds
along the neck, allowing outflow along the wall (see also Fig.6). In the proximal cross-section (Fig.5g) the flow
follows the aneurysm wall, while the velocity is directed towards the symmetry plane in the middle of the aneurysm
(Fig.5h). In the lower part of the aneurysm, the velocity is re-diverted towards the wall as it meets the flow in the
parent artery. Figure 5i shows the cross-section in close proximity to the vortex center, which depicts a complex
flow pattern. In the lower part the flow is directed towards the parent artery, whereas it is directed towards the top
in the upper part of the aneurysm. As the fluid meets the top of the aneurysm it spreads along the wall, only to be
directed towards the symmetry plane just below of the vortex center. This results in yet another set of small vortex
cores on each side of the plane of symmetry.

The contours in Fig.7 represent the area in which the second largest eigenvalue, X, is smaller than zero. The
velocity fields in Fig. 5a—c show a single vortex, whereas the vortex identification depicts a more complex vortex
structure (Fig.7a—c). When considering the velocity fields in other cross-sections, it becomes evident that there
are other smaller vortex cores present as described above (Fig. 5d—i). This clearly shows the complexity of the 3D
vortex structure, in which smaller vortices interact with each other. Altogether, the volume containing the vortex
core is a doubly curved structure where both curvatures have the same sign, resulting in an indented sphere.
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Fig. 7 Velocity vectors and vortex structures in the cross-sections defined in Fig. 3. Detection of the vortex core is achieved using a
vortex identification scheme based on the second eigenvalue method developed by Jeong and Hussain [19]

4 Discussion

It is well-known that hemodynamical forces are involved in aneurysm growth and rupture. Unfortunately, intra-
aneurysmal flow can currently not be determined in vivo. CFD is a powerful tool in the analysis of intra-aneurysmal
flow patterns, in both idealized and patient-specific geometries. However, several assumptions have to be made in
the modeling of this pathology, as in all biological systems. First of all, Newtonian behavior was assumed when
modeling the blood flow, which is reasonable for the high flows observed in large arteries. Within the aneurysmal
sac however, velocities may become very low which might introduce the need for a more realistic viscosity model.
Furthermore, a rigid wall is assumed, which obviously is not the case in vivo [30]. The compliance of the vessel wall
might be incorporated in the model, but that would require knowledge of the pressure and mechanical properties of
the wall. These properties can not be measured directly in vivo. However, as the resolution of visualization modal-
ities increases, it might become possible to derive them from wall motion and pressure measurements in the future.
These pressure measurements would also be relevant when determining appropriate boundary conditions, since
the stress-free outflow boundary condition used here will not suffice when wall compliance is taken into account.
Altogether, the number of unknowns introduced when the wall compliance is taken into account may cause this
more complex model to be less accurate.
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The velocity fields obtained with the CFD model are compared to those measured with PIV in three cross-sections
(Fig.3). In PIV measurements the high out-of-plane velocities are a major complication, especially if the in-plane
velocities are relatively low. Hence, the measurements in-plane b were expected to be most accurate. Indeed, the
magnitude of the measured intra-aneurysmal velocities are only 2% higher than the computed velocities. Since the
PIV settings were based on the velocities in aneurysm, a larger difference is observed in the parent artery. However,
the slanted profile in the parent artery (Fig.4) is consistent with theoretical considerations of flow in curved tubes
[31,32].

In planes e and h the out-of-plane velocities are higher than the in-plane velocities, especially near the distal
side of the aneurysm and in the parent artery. Still, PIV captures the secondary flow pattern along the wall of the
parent artery, whereas the out-of-plane velocity is too high in the center of the parent artery. The characteristics in
the measured velocity field in plane h (Fig. 4) resembles the velocity field in planes i (Fig. 5). For planes e and h, the
flow patterns observed 1 mm next to the plane considered differ significantly, whereas this is not the case for plane
b. Hence, when measuring planes e and h, a slight deviation in the positioning of the laser sheet, and averaging of
the velocities over the thickness of the laser sheet, influence the resulting velocity field.

As could be expected based on the low-Reynolds-number, no-transitional flow or flow disturbances are observed
in the velocity field obtained with PIV. Therefore, the Euler implicit time integration used in the CFD model is
able to describe the steady state limit of the flow. Considering the similarities between the characteristics of the
measured and computed velocity fields, it seems that the CFD model describes the velocity fields in the aneurysm
and its parent artery correctly. Since this CFD method has been used successfully in other applications [33] and the
velocity fields obtained with PIV and CFD show the same characteristics, the CFD model will be used for further
analysis of the intra-aneurysmal velocity field.

The intra-aneurysmal velocity fields show a single counterclockwise vortex, which is consistent with the findings
of Liou et al. [15]. Furthermore, Liou et al. [15] reported that the inflow proceeds around the distal lip of the neck
close to the plane of symmetry, which is also observed in the velocity field within the plane of symmetry (Fig. 5b)
and cross-sections in the neck (Fig. 6). When considering the velocity field within the planes in Fig. Sa—c, one would
expect the vortex identification to result in a circle in Fig. 7a—c. The 3D flow pattern, as can be seen in the other
cross-sections, results in a more complex vortex core structure due to the presence of multiple interacting vortices.
This clearly shows the need of a more advanced analysis method for intra-aneurysmal flow patterns, such as the
identification and quantification of features like vortices and stagnation regions.

Cebral [8] uses one cross-section to characterize the blood flow patterns in the aneurysmal sac. This may lead to
a misinterpretation of the data, since a pattern might appear to be a single vortex in one plane and more complex in
the other. This can be observed even in the simplified geometry used here. In pulsatile flow conditions, the location
of the vortex cores will shift throughout a cardiac cycle. The smaller vortices observed in Fig. 5d, e and i, if present
in pulsatile flow, might have an influence on the oscillating wall shear stress. Therefore, these small vortices may
be important in the relation of rupture risk and flow patterns. However, since the major drawback of the vortex
identification method used here [19] is the failure to discriminate between different vortex cores that are in close
proximity of each other, multiple cores may arise as one vortex structure. Another vortex identification method,
e.g. the predictor-corrector method proposed by Banks and Singer [34], or combination of vortex identification
methods, might be more appropriate for this application. The relationship between the vortex structure and rupture
risk remains to be established. Moreover, other features, such as stagnation regions, may be relevant as well. The
methods to be used should be optimized by the analysis of intra-aneurysmal flow patterns in different idealized
geometries, after which patient-specific geometries should be examined in order to identify rupture risk estimators.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
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